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ABSTRACT

In the source-free mantle/frozen-flux core magnetic earth model,

the non-linear inverse steady motional induction problem has been solved

using the method presented in Part IB. The present paper describes how

that method has been applied to estimate steady, broad-scale fluid

velocity fields near the top of Earth's core that induce the secular

change indicated by the Definitive Geomagnetic Reference Field (DGRF)

models from 1945 to 1980. Special attention is given to the derivation

of weight matrices for the DGRF models because the weights determine the

apparent significance of the residual secular change. The derived

weight matrices also enable estimation of the secular change signal-to-

noise ratio characterizing the DGRF models.

Two types of weights were derived in 1987-88: radial field weights

for fitting the evolution of the broad-scale portion of the radial

geomagnetic field component at Earth's surface implied by the DGRFs, and

general weights for fitting the evolution of the broad-scale portion of

the scalar potential specified by these models. The difference is non-

trivial because not all the geomagnetic data represented by the DGRFs

constrain the radial field component. For radial field weights (or

general weights), a quantitatively acceptable explication of broad-scale

secular change relative to the 1980 Magsat epoch must account for

99.94271% (or 99.98784%) of the total weighted variance accumulated

therein. Tolerable normalized root-mean-square weighted residuals of

2.394% (or 1.103%) are less than the 7% errors expected in the source-

free mantle/frozen-flux core approximation.

...
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I. INTRODUCTION

The work of ELSASSER (1946a, b 1947) and others has led to general

acceptance of the importance of induction effects in geomagnetism (see,

e.g., JACOBS, 1987). The importance of steady induction effects in

geomagnetism, although clearly less, cannot be dismissed simply because

slow changes of the geomagnetic field, the secular variation (SV), are

not purely linear with time-as evidenced by the inaccuracy of

predictions by BOND (1668). Unlike steady magnetic flux diffusion,

motional induction by steady fluid flow near the top of the electrically

conducting liquid outer core need not imply constant SV. Consider, for

example, a high conductivity core threaded by a partly non-axisymmetric

magnetic field of internal origin: steady, uniform westward flow of this

core relative to a magnetically source-free mantle induces unsteady SV

in the mantle reference frame.

1.1 Synopsis

Part IA (VOORHIES, 1992) offered some reasons to consider steady

induction effects in geomagnetism. The source-free mantle/frozen-flux

core (SFM/FFC) earth model (wherein a rigid, impenetrable, electrically

insulating mantle of uniform magnetic permeability surrounds a

spherical, inviscid, and perfectly conducting core in anelastic flow)

was introduced and used to focus attention upon the fluid motion near

the top of the core. The theory underlying some estimates of core

surface flow was summarized. Some implications of a few kinematic and

dynamic hypotheses were derived. The solution to the forward stead},

motional induction problem was found to be an example of deterministic

chaos. Special attention was given to the long-term geomagnetic effects

of persistent, surficially geostrophic flow.

To investigate steady induction effects in a quantitative way, it

is useful to treat the supposition of steady surficial core flow as if

it were a hypothesis to be tested geomagnetically. Then the idea is to

see if such a flow can be designed to induce the secular change signal

indicated by geomagnetic data (or broad-scale spherical harmonic models

thereof) and, if not, assess the significance of the residual, unmodeled

signal. Part IB (VOORHIES, 1993) offered a fairly general method for

estimating a steady fluid flow at the top of the core in the context of

the SFM/FFC model. The method is based upon iterative solution of the

linearized weighted least-squares problem, but admits optional biases

favoring surficially geostrophic flow and/or spatially simple flow.

As noted in Part IB, solution of the non-linear inverse problem

posed by the hypothesis of (piecewise, statistically) steady core

surface flow requires specification of a complete initial geomagnetic

condition: the radial field component everywhere at the top of a FFC,

Br(b,t), or, for a SFM, at Earth's surface, Br(a,t). Such a condition

will not be specified by discrete geomagnetic data alone within the

forseeable future. Moreover, tests of steady flow are likely embedded

in some magnetic earth model-be it the SFM/FFC model or a refinement

thereof. The rigor of a purely geomagnetic test is thus limited: it may

be that errors in the initial condition or in the earth model, rather

than errors in the steady motions hypothesis, lead to unacceptably large

residuals. It is thus doubtful that geomagnetic tests of the steady

motions hypothesis can be absolutely decisive. Fortunately, we already



know that both the SFM/FFC model and the steady motions hypothesis are

but conceivably relevant idealizations. The question remains as to what

fraction of recent SV cannot be readily attributed to steady induction

effects• Such unmodeled signal may contain evidence for many other

interesting geomagnetic effects. It turns out that application of the

method developed in IB is well suited to answering this question.

1.2 Review of the Theory

For steady flow, the radial component of the magnetic induction

equation at the top of a frozen-flux core of radius b is, in spherical

polar coordinates (r,8,#),

_tBrp(b,t) + Vs(b).VsBrp(b,t) = Brp(b,t)SrU(b ) (0)

which is a special case of the ROBERTS & SCOTT (1965) equation. With

sums running over repeated subscripts, the compact spherical harmonic

expansions for the input radial magnetic flux density Br(r,t) and for

the predicted radial magnetic flux density Brp(r,t) are, respectively,

Br(r,t) = gi(r,t)Si(8,#)
(la)

Brp(r,t) = _i(r,t)Si(O,#).
(ib)

Here Si(0, _) is a Schmidt-normalized spherical harmonic; compact index i

is uniquely determined by, and uniquely determines, both the spherical

harmonic degree n(i) and the order m(i). Radii a = 6.3712 Mm and b =

3.480 Mm are of interest here, so define: gi = gi (a't); Gi = gi (b't); Yi

= _i(a,t) ; and F i -= iY)i+(_,t) . For a SFM, gi = _'ijGj and 7i = _'ijFj,
where Tij =[b/a]n( 6ij is an element of the diagonal upward

continuation matrix. The gi are the input Schmidt-normalized Gauss

coefficients (gnm, hn m) for the usual internal scalar magnetic potential

at reference radius a multiplied by [n(i) + I].

The hypothetically steady fluid flow at the top of the core

A

Vs(b ) = VsT(b) x r + VsU(b) (2a)

is parameterized in terms of the spherical harmonic coefficients for the

expansions of the streamfunction -T and velocity potential -U:

T(b) = _iSi(8,#) U(b) = _iSi(0,_).

Equation (IB.15) follows from substitution of (la-2b) into (0):

_tFk = (FiXijk)_j + (FiYijk)_j = Pkj(_j + Qkj_j"

(2b)

(3)

The (Xijk,Yij k) are given by (IB.16); (Pkj,Qkj) are given by (IB.17) .

Upward continuation of (3) gives equations (IB.18a-c):

_tYi = _ik_tFk = _ik[(FiXijk)_j + (FiYijk)_j]

= ]_ik[Pkj(_j + Qkj_j]

= Pij_j + qij_j - Ail_l"

(4a)

(4b)

(4c)
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The matrix notation for (4c) is @t[ = A_, where -_ is the extended

column vector of streamfunction and velocity potential coefficients and

A is the matrix of normal equations coefficients. The elements Ail of A

_ary with time due to their dependence upon Brp(b,t), hence upon _ and

the initial geomagnetic condition.

1.3 Summary of the Method

The approach to estimating _, hence

steady flow Vs(b), described in Part IB

function

the _i' the _i' T, U, and

is based on minimizing the

4_A 2 = 4_(Ar2 + kgAg 2 + kdAd2).

In (5a), Ig and I d are adjustable damping parameters.

normalized square-weighted residual, or misfit, is Ar2-

tf T

4_r2 = S (g - y) W(g - y)dt

t o - -

(5a)

The semi-

_-f
tf

{EJ
t o

t t

(_Tg - A_)dT]Tw[[ (_g - A_)dT]]dt

t O - = - = t O - = -

=- [_Tg - A_]Tw[_Tg - A{] (5b)

where W_ is the time-dependent radial field weight matrix and the initial

condition is taken to be g(a,to) : _(a,to). For general weights, _/f

replaces W/4_= in (5b). The mean-square ageostrophy of the flow is Ag 2=

2_ _ v(b)

4_kgAg 2 = kg _ _ (_rU(b)cos0 + --sin0]2sin0dSd_

0 0 b

v

4_kg<{SrUCOS8 + -sin0]2>

b

= [B_] TAg [B_ ]" (5c)

The mean-square radial vorticity plus the mean-square downwelling is

just Ad2 _ <[_r(b)] 2 + [_rU(b)]2>:

4_IdAd 2 = _TAd_" (5d)

The linearized weighted least-squares estimate of the parameters

obtained by treating A as if independent of _ and minimizing (5a) :

is



% = [A T W A + B T Ag B + Ad]-I[A T W _zg]
(6)

which is (IB.32).

Because A depends on the predicted radial field component B__(b,t),

it depends upon [, hence upon { and the initial condition. Minimlzation

of (5a) is thus a non-linear inverse problem. To solve this problem by

iterative solution of the linearized problem, initial matrices A(0) are

computed from the input g(t) . Then (6) is solved for {(i) which, in

turn, is used to construct Vs(b) and solve the forward problem (0) from

the inital condition at t o . The resulting predictions Brp(b,t) are used

to compute the time-varying predicted radial field coefficients _(I),

the residuals _g(1) = g - 7(I), and new matrices A(1) for the next

estimate, {(2).- With 6g(j) = g - YJJ) and 9(j+l) = %(9) + __(j+l),

the correction to {(j) is given by deep iteration equation (IB.33a) :

_(j+l) : [A(j) T W A(j) + BTAgB + Ad]-I[A(j)Tw _g(J)]

- [B T Ag B] [%(j) - _go ] - Ad[%(J) _do ]"

(7)

Shallow iteration is described by equation (IB.33b) .

Note that % o is taken to be 0 in the calculations. The routine

prior bias {do [_ also taken to be-0;_ however, some calculations have

been performed with a learning algorithm so as to escape from this bias

against non-trivial parameters. Then {do is taken to be {(j) and

k d -_kd(J+l) is selected to keep _(j+l) close to _(j) (see IB, section

3.3). The learning algorithm is used to explore the tightness of fit

afforded by steady flows which appear so spatially complicated as to

inhibit convergence of the iteration scheme (7)-as expected if (5a) has

multiple extrema for very small values of k d.

2. APPLICATION

The foregoing method has been applied to estimate piecewise steady,

optionally geostrophic, and optionally damped, surficial core motions

which induce the secular change indicated by the Definitive Geomagnetic

Reference Field (DGRF) models. The DGRF models were derived by Working

Group i.I of the International Association of Geomagnetism and Aeronomy

(IAGA, 1988) . The DGRFs are slowly varying, broad-scale spherical

harmonic models of the magnetic field observed at and near Earth's

surface. They include the 120 Gauss coefficients through degree and

order i0 at 5-year intervals from 1945 to 1980. Linear interpolation

gives the recommended broad-scale geomagnetic field model between DGRF

epochs (PEDDIE, 1982); however, the work of ALLDREDGE (1987) and of

LANGEL et al. (1988) indicates that such interpolation need not, and

indeed should not, be taken too seriously.



The DGRFmodel for epoch 1980 consists of the Gauss coefficients of
the model GSFC(12/83) derived by LANGEL& ESTES(1985) rounded to the
nearest nT and truncated to degree and order i0.

PEDDIE (1982) describes the derivation of the DGRFmodels for
epochs 1965, 1970, and 1975. Eachof these models is a weighted average
of three candidate models derived by different groups of geomagnetists:

the GSFC (9/80) model derived by LANGEL et al. (1982); the IGS models

derived by BARRACLOUGH et al. (1982); and the USGS models derived by

PEDDIE & FABIANO (1982) . The weighted averages are rounded to the

nearest nT and truncated to degree and order i0. The time-dependent

weights assigned to the GSFC, IGS, and USGS models are, respectively,

(0.2, 0.6, 0.2) for 1965; (0.25, 0.50, 0.25) for 1970; and (0.3, 0.4,

0.3) for 1975 (PEDDIE, 1982).

The DGRF models for epochs 1945, 1950, 1955 and 1960 were derived

by LANGEL et al. (1988). The Gauss coefficients published in that paper

are rounded to the nearest 0.i nT, are accompanied by simultaneously

derived SV coefficients, and include uncertainty estimates. The latter

estimates depend upon prior assumptions including: (i) the spatial power

spectra of the core and crustal fields used to form correlated data

weight matrices and (2) the requirement that in regions of poor data

coverage the models do not stray too far from a MAGSAT model projected

back in time (LANGEL et al., 1988).

Spherical harmonic models of the geomagnetic field have been

derived for about 150 years; they represent a vast number of

observations quite well. The 8 DGRF models can be (and with general

weights are) viewed as 8 points in a 121-dimensional sub-space: 120

dimensions for the coefficients and one for time. The covariance

matrices derived for the DGRF models (see section 3.1) describe

estimated error ellipsoids around each such point (excluding 1980). My

strategy for estimating a single steady flow is to take one of these

points (e.g., 1980) as an initial condition and seek a trajectory whose

projection onto the 121-dimensional sub-space passes close to the other

7 points. The trajectory is the predicted magnetic field determined by

upwardly continuing the results of steady, frozen-flux motional

induction at the CMB through a SFM. If a trajectory is found whose

projection passes close enough to (e.g., intercepts) all 7 error

ellipsoids, then the steady flow hypothesis and the SFM/FFC earth model

are compatible with the DGRF models and any geomagnetic data they

adequately represent. Indeed, the steady flow hypothesis would then

seem to be in the same class as the candidate DGRF models. If no such

trajectory is found, then the steady flow hypothesis or the earth model

should be suspected of significant error. If no such trajectory exists,

then one or more of these suppositions is too poor to provide a

quantitatively adequate explication of the indicated secular change.

Application of the method derived in IB (or similar methods) to a

particular set of Gauss coefficients (or original data) presents

particular technical problems which must be solved either before or

during the calculations. The rest of this section describes how these

problems have been solved for the case of the DGRFs.

2.1 Initial Conditions

Solutions of the forward steady motional induction problem at the

top of a FFC can exhibit an extreme sensitivity to initial conditions



common to many problems in deterministic chaos (IA, section 3). Initial

conditions should therefore be selected with care. The 1980 DGRF model

represents global geomagnetic data gathered by NASA's Magsat satellite

as well as other types of data, so it was chosen to constrain the

initial conditions by selecting t o = 1980 when fitting either the entire

35-year sequence of DGRF models (tf = 1945) or any sub-interval

including epoch 1980. This is a relatively ambitious initial condition

because 1980 is an endpoint rather than an interior point of the 35-year

time interval, and because errors in the initial condition are expected

to grow exponentially with elapsed time It - tol (see equation

(IA.14b)). This choice will, however, enjoy an advantage when extending

the steady motions hypothesis to make and test predictions for

subsequent epochs.

A complete initial condition is required. Though complete in the

spatial domain, the DGRFs are truncated spherical harmonic models and

are thus incomplete in the Fourier-Legendre spectral domain. The 1980

DGRF model contains no information about Gauss coefficients of degrees

greater than 10, so some supposition is needed to complete this model.

I have supposed that all Gauss coefficients of degrees greater than 10

are zero at 1980-the expectation value indicated by any probability

distribution for these Gauss coefficients which enjoys zero mean. This

supposition, along with the SFM/FFC model, limits my ability to falsify

the steady flow hypothesis: if this initial condition does not allow

derivation of a satisfactory fit to the other 7 DGRF models, there may

be a different initial condition with a non-trivial narrow-scale core

field which does. Because the 1980 DGRF model is a truncated version of

model GSFC (12/83), which includes main field coefficients through

degree and order N F = 13, coefficients of degrees ii, 12, and perhaps 13

can be used to test the sensitivity of misfit, estimated velocity

fields, and geomagnetic field forecasts to changes in the narrow-scale

part of the initial magnetic conditions. Indeed, a test case showed

that including non-trivial initial coefficients through degree 12 gave a

very slight improvement in fit to the other 7 DGRFs. Effects of still

higher degree initial coefficients could be investigated via Monte Carlo

inversions of deterministic chaos-a seemingly unenlightening pursuit.

Reliance upon non-trivial, narrow-scale initial geomagnetic conditions

to provide a satisfactory fit may be possible, but it seems inelegant;

indeed, contrivance of such conditions might well be dismissed as a

fluke. Of course, with a much more realistic earth model, such design

could reveal fine core field structure which is otherwise masked by the

crustal field.

2.2 Magnetic Truncation

The spherical harmonic expansions for the input radial field (la)

and the predicted radial field (ib) involve summations over repeated

subscript i which ought to run from one to infinity (or to the highest

wavenumber describing the macroscopic geomagnetic field). The same is

true of the summations required to evaluate the square-weighted residual

(5b) and thus to estimate the (similarly infinite dimensional) vector of

flow parameters _. These sums must be truncated in practice.

The DGRF models do not specify the Gauss coefficients of degrees

greater than i0 (n > N B = i0) and thus do not specify the radial field

coefficients gi with i > NB(NB+2) = 120. This does not imply, nor is it
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tantamount to assuming, that such high-degree coefficients are zero! It

means only that such high-degree coefficients are not known well enough,

are hopefully not important enough, and are perhaps too influenced by

the crustal field, to include in the DGRF models. Therefore, if the

spherical harmonic representation of a predicted magnetic field model

contains non-zero radial field coefficients Yi with i > 120, such

coefficients must not be directly included in the square-weighted

residual. This requirement can be met by truncating both gi and Yi in

(5b) to length ima x = 120 when evaluating and _r 2 Such truncation is

consistent with the assumption that high-degree DGRF cofficients are

unknown. The possibility of using prior beliefs or biases about the

evolution of the narrow-scale core field to constrain predicted high-

degree coefficients is not pursued here. Such coefficients can be

derived by extending spherical harmonic analysis of the predicted field

past the I0 th degree and they may then be examined in detail. This was

not done routinely; however, both the rms predicted radial field

<[Brp(b,t)]2>i/2, and the rms time rate of change of thecomponent,

radial field, <[_tBrp(b,t)]2> I/2, are routinely calculated topredicted

verify that implausible contributions from narrow-scale radial fields at

the CMB are in fact not predicted. The former does not exceed a few

gauss and the latter typically does not exceed several thousand nT/year.

An alternate approach to the magnetic truncation problem is through

the radial field weight function W(a,t) and weight matrices W(a,t) (or
=

the general weight matrices _(a,t)}. The objective is to match the

evolution of the broad-sca_e part of the radial field alone, so the

weight function must reflect uncertainties in the broad-scale radial

field represented by low-degree coefficients alone. Then (possibly

unknown) radial field coefficients of degrees greater than some maximum

degree (here i0) must be assigned zero weight. To do so one may set the

Wij with i or j (or both) greater than 120 equal to zero. Similarly, if

the objective is to match the evolution of the broad-scale scalar

potential, then direct contributions to the square-weighted residual

from high-degree coefficients must be assigned zero weight. This can be

accomplished by truncating each _(t) to a 120x120 matrix. Truncation

of W (or _) has the same effect on the square-weighted residual as

truncation of both g and _. Both approaches avoid including the direct

effect of non-trivial predicted high-degree coefficients in the square-

weighted residual.

Truncation of weight matrices does not necessarily justify

truncation of covariance matrices used to derive them. Ideally,

complete covariance matrices would be inverted for complete weight

matrices. Truncation of the complete weight matrices would then target

the broad-scale objective.

In practice, all gi above degree I0 are taken to be zero only to

start the iteration scheme (j = 0 in equation (7)). They are also taken

to be zero at time t o when an initial condition is needed to prime the

forward motional induction scheme. The latter is a finite difference

representation of equation (0} which induces SV by steady numerical

advection of the radial field on a 2°x2 ° regular mesh using 10 -2 year

time steps. (The adequacy of a 2 ° mesh has been confirmed by comparing
0

test results with those obtained using a 1 mesh; the accuracy of the

first-order time-stepping has been confirmed using a second-order

scheme). The resulting numerical solutions of the forward steady



motional induction problem implicitly represent the predicted magnetic
field through very high degree: the azimuthal Nyquist wavenumberis 90
on the 2°x2° mesh.

This fine resolution allows key effects of the predicted narrow-

scale core field on both the solution of the forward problem and the

iterative solution of the inverse problem to be retained without having

to calculate predicted coefficients above degree i0. Such high-degree

coefficients would represent narrow-scale core field structure induced

by the interaction of the steady fluid motion with the radial magnetic

flux density (VOORHIES, 1984; 1986a; 1986b). Because a steady fluid

flow also interacts with the narrow-scale field to induce secular change

on all spatial scales, the predicted narrow-scale fields eventually

influence the predicted broad-scale field. Specifically, predicted

high-degree coefficients eventually influence predicted low-degree

coefficients (see untruncated equations IB.15-16b). Because predicted

low-degree coefficients determine the square-weighted residual, this

indirect effect of predicted high-degree coefficients must be included

to accurately measure misfit.

Only the ?i through degree i0 contribute directly to the square-

weighted residual, so only the _t? i through degree i0 contribute

directly to (5b) (see (IB.9c , llc and 19)). It follows that linearized

attempts to minimize the square-weighted residual need only account for

the first 120 rows of A (VOORHIES, 1986b). This is also true for

attempts to solve the n_n-linear inverse problem by iterative solution

of the linear problem. However, as noted above, the indirect effects of

predicted high-degree coefficients on the predicted low-degree

coefficients must be retained when solving the non-linear problem. This

requirement can be fairly well, if not strictly, met by several

techniques-each of which demands very accurate calculation of the total

predicted radial field component needed in (4a-c).

The physical technique adopted tracks B_(b,t) in the physical
_v

domain via finite-difference solution of equatlon (0) on a fine mesh.

Values of Brp(b,t) at the mesh points are periodically stored for use

with (4b). Only the low-degree coefficients needed to evaluate the

residuals and _g(j) are extracted from Brp. The surface integrals
-- r

giving _ and Q (IB.17) are evaluated numerically, so both broad and

narrow scales in the predicted field contribute to the new A(j) needed

for the next deep iteration (7). One pseudo-spectral technique would

solve (0) in the physical domain, but periodic sphezical harmonic

analysis of Brp(b')t)90 for the Fk(t) would extend through very high degree

and order (say . These F k would then be used in (4a) with Xi_ k and

Yi_k evaluated through extremely high wavenumber k (say k _ 8,2801. but

on±y i _ 120. A purely spectral technique based on (4a) would track

evolution of the Fk(t) through very high degree using (3), the Xij k and

Yisk from (IB.16a-b) evaluated to extremely high wavenumbers i and k,

ana,_ say, Fk(t+6t) = Fk(t) + [_tFk(t)]6t with very small St. Efficient

evaluation of the Xij k and Yijk has been achieved by K. A. Whaler and D.

Winch (1987, personal communication). Spectral methods may be more

efficient computationally, but I prefer the simple, direct physical

method (which might be readily adapted to an aspherical CMB).



2.3 Velocity Truncation and Damping

The original method of VOORHIES (1984; 1986a) yields steady flows

which fit SV models at the CMB under the assumption that $V coefficients

above degree N B are zero. It was found that the streamfunction should

include coefficients through degree 12 or more in the case of purely

toroidal flow. For combined flows, the preferred solution (C4) included

both streamfunction and velocity potential coefficients through N T = N U

= N v = 12. The second method (VOORHIES, 1986b) yields steady flows

which fit SV at Earth's surface without assuming zero high-degree SV;

however, omission of non-linear aspects of the inverse problem and the

avoidance of damping prohibited meaningful estimation of flow

coefficients above degree 5. Estimates with N v > 5 gave smaller linear

residuals, but larger genuine, non-linear, residuals obtained via

forward solution of the steady motional induction problem, spherical

harmonic analysis of Brp(b,t), upward continutation, and comparison with
the DGRFs.

After some experimentation with new algorithms, I chose to truncate

the velocity field parameterization at degree and order N v = 16 and to

use non-zero damping kd. Then 288 _i and 288 _i' or 576 velocity field

parameters _j, are determined; these parameters are not entirely free

when either Id or kg (or both) are non-trivial. Such truncation is

satisfactory when equation (7) is solved with large to moderate i d and

_do = 0. The latter selections also yield solutions _(j) which converge

in a few iterations. When i d is too small, shallow iteration using the

initial A(j = 0) matrices did not appear to yield convergent solutions,

indicating a failure of the linearization in the case of vigorous,

complicated flow. Moreover, deep iteration with small i d sometimes gave

_(j) converging towards local minima characterized by greater square-

weighted residuals than solutions of lesser roughness. This is to be

expected when non-linear aspects of the inverse problem are not

overwhelmed by a fixed prior bias {do = 0 (towards zero solution norm).

Physically, the spectral mapping of a fixed prior bias towards zero norm

can inhibit discovery of solutions with (a priori, improbably) tall

peaks in the surface kinetic energy density (SKED) spectrum (VOORHIES,

1984, 1986a) that offer a smaller misfit at equal or lesser norm.

Linear stability calculations (CHANDRASEKHAR, 1961) lead me to suggest

that tall peaks in the SKED spectrum are in fact quite plausible.

The learning algorithm does not suffer so much from this drawback

because it allows iterative growth of tall spectral peaks which may be

needed to reduce misfit. It was used to derive rougher flows and

tighten the upper bounds on the apparent error in the earth model.

Examination of SKED spectra indicates N v = 16 is acceptable for flows of

moderate roughness derived using the learning algorithm. The learning

algorithm need not produce convergent _(j) (unless kd(J+l) is set to

infinity), so increasing N v could reduce the misfit for the roughest

flows explored. For very large Nv, the learning algorithm yields flows

with SKED spectra which must in principle still fall off faster than n -3

at high n; however, the amplitude of the spectra will depend on both the

convergence factors (kd(j)) used in, and the solutions obtained by, all

previous iterations. Such hysteresis effects may occur in other

applications of the learning algorithm.
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2.4 Inteqrations

The double time integrals in equation (7) can be approximated

numerically in many ways. I chose a simple method based on accepting

the suggested linear interpolation between DGRF models at face value.

The interval t o to tf (e.g., 1945 to 1980) is subdivided into L = 7

sub-intervals. For each sub-interval i, let t I denote the mid-point,

tl_ the beginning, tl+ the end, and let _t 1 = tl+ - tl_ denote the

duration (5 years). The time rate of change of the radial field is

approximated by a temporally constant, but spatially variable, SV in

each such sub-interval in accord with the suggested linear

interpolation. The time-dependent A matrix is the upward continuation
=

of'the concatenated P and Q matrices (4c). Elements of P and Q (IB.17a-

b) are linear in the=radia_ field at the CMB, so the i_tegra_ of any

such element over any sub-interval At I is approximated by the value of

that matrix element at the sub-interval midpoint t I multiplied by At I.

These values were estimated by substituting the arithmetic mean of

Brp(b,t) at times tl+ and tl_ into equations (IB.17a-b) and evaluating

the integrals over the CMB numerically using a simple double Riemann sum

approximation on a 2°x2 ° mesh.

The dummy time integral of the A matrix is thus approximated by its

Riemann sum

t - tl+ 1

h(_) (t) m _ A(_)dZ = A(tl+) = _ A(Z)d_ = E A(tk)At k (8a)

= t o = = t o = k=l =

and the elements of _)_g at time t are approximated by

t tl+

_g(_) (t) m S _g(z)d_ = 6_Tg(_) (tl+) = S 6_g(_)d_

t o t o

1

= _ _zg (tk) At k (8b)

k=l -

where

_tgi(tk) : [[gi(tk+) - gi(tk_)] [Ti(tk+) Yi(tk_)]]{Atk ]-I (8c)

If the initial condition were at 1945, then k would be incremented from

1 (sub-interval 1945 to 1950) to 1 (sub-interval tl_ to tl+) . With the

initial condition at 1980 (the end of the interval), k is actually

decremented from 7 (sub-interval 1975 to 1980) to i. However, it is

convenient (and thermodynamically permissible) to imagine time running

backwards in this dissipationless (and thus isentropic) problem. Then

relabeling the sub-intervals still allows (8) to be used.

Because A and _k]zg are treated as steady during each sub-interval

in the dummy lime integrals, it is convenient to further approximate the

weight matrix elements Wij as constants during each sub-interval. Then
T

the double time integral of A WA in equations (7) is approximated by

I0



L 1 1

A(_)Tw(t) A(_) = _ {[ _ A(tk)At k] W(t I) [ _ A(tk)Atk]}Atl (9a)

= = = i=i k=l = = k=l =

and the double time integral of ATw_zg is approximated by

L 1 1

A(T)Tw(t)_g(z) = Z {[ Z A(tk)At k] W(t I) [ Z _g(tk)Atk]]At I. (9b)

= = - i=i k=l = = k=l -

The finite time element approximations (9a-b) seem particularly

appropriate for initial iterations (j = 0) using the DGRFs-provided the

weight matrices are roughly constant. If they are not, it would be

better to use a more precise technique (e.g., select L > 7). This has

not been attempted because the best method for interpolating the DGRF

models and their weight matrices is not known. (A more accurate method

for evaluating the dummy time integral for j > 0 which exploits the

results of the forward solution has recently been adopted).

No allowance for the polar caps was made in the spatial numerical

integrations used to calculate elements of P and Q, hence A. These

matrix elements are thus accurate to only about two parts in 104

Indeed, downward continuation of the 1980 DGRF to the CMB, evaluation of

Br(b,1980) on the mesh, spherical harmonic analysis through degree i0

via numerical integration, and subsequent upward continuation yielded

rms errors in the radial field of 6.77 nT (about 2 parts in 104). This

error is due primarily to inexact reproduction of zonal (i = n 2)

coefficients and to the large axial dipole in particular. Although this

error is smaller than the minimum 25 nT rms uncertainty in the pre-1980

DGRF radial field models (see section 3.2), a polar correction was

included in the spherical harmonic analysis of the predicted field for

the ?i at all DGRF epochs so as to calculate the misfit precisely. This

reduced the error from 6.77 nT to 0.II nT in the test case.

Small errors resulting from imperfectly exact integrations are

unimportant compared with expected errors in the underlying physical

assumptions. For example, it is doubtful that the radius of the core is

known to better than 1 part in 103: one survey of seismic estimates

indicated the core radius to be 3485 + 5 km (VOORHIES, 1984). Because

errors in the core radius 6b (and larger errors associated with the

omission of core ellipticity) amplify as [a/ (b+6b) ] n+l when B r is

extrapolated from Earth's surface to the CMB, they should exceed the

spatial integration errors. Fine tuning of the spatial integration is

not too difficult, and may be needed when core asphericity is included.

(Indeed, extremely accurate spatial integrations based on a quartrature

rule have recently been developed and implemented).

Tests conducted with synthetic field models show that the numerical

methods do not contribute significantly to the misfit, Ar2 These tests

also reveal that recovery of steady flows used to synthesize test case

secular change models, and thus the effective elimination of misfit,

requires extremely small damping kd. Nevertheless, I can but establish

upper bounds on the error in the earth model because of the uncertainty
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in narrow-scale initial magnetic conditions, the finitude of N v, and

limitations imposed by either fixed bias or learning algorithms.

3. DERIVATION AND IMPLICATIONS OF WEIGHT MATRICES FOR THE DGRF MODELS

3.1 Derivation of the Weight Matrices

Derivation of weight matrices for the 1945, 1950, 1955 and 1960

DGRF models proved straightforward. The total information matrices for

these models were generously provided by R. Langel and T. Sabaka (LANGEL

et al., 1988). These 200x200 matrices were inverted to obtain the full

covariance matrices for these DGRF models. The latter were stripped of

main field-secular variation (MF-SV) and SV-SV coefficient covariances

because the main field weighting scheme was selected. The square roots

of the diagonal elements of the resulting 120x120 main field covariance

matrices, V(t), are the uncertainty estimates for the main field

coefficient--s published by LANGEL et al. (1988). The elements Vij(t)

were multiplied by [n(i)+l] [n(j)+l] to obtain the epoch-dependent

elements of the covariance matrix for the input radial field

coefficients, Eij(tn). These matrices were used to calculate the

squared uncertainty estimates for the DGRF models at the mesh points of

the 2°x2 ° regular grid using the inverse of equation (IB.10) . The

resulting (_Br(a, tn) . the square root of the inverse weight functions

W(a,t)-i/2the, are same as the uncertainty estimates contoured by

LANGEL et al. (1988, figures 2c, 3c, 4c, and 5c) . As expected, the

weight function is large (heavy) in areas of dense data coverage (e.g.,

Europe) and small (light) where data are sparse (e.g., the SE Pacific

Ocean and portions of the Indian Ocean). The weight matrix elements Wi_.

at DGRF epochs 1945, 1950, 1955, and 1960 were evaluated by numerica_

integration of (IB.12a).

A very different method was used to derive weight matrices for the

DGRF models at epochs 1965, 1970, and 1975. Recall that a weighted

average of the three candidate models defines the DGRF models at these

epochs. The weight factors are supposed to reflect the apparent

accuracy of the candidate models (PEDDIE, 1982). This weighted average

was taken as defining the expected value of the Gauss coefficients and

thus the expected value of functions thereof.

Let the vector of radial field coefficients for candidate model k

at epoch t n be denoted by its elements gik(tn ) . Then the radial field

coefficients for the DGRF model at epoch t n are

gi(tn ) = gi(tn ) __- wijk(tn) gjk(tn) (I0)

where the approximation represents roundoff error. The weight tensor

wijk(tn) depends on epoch t n, candidate model k and the coefficient of

interest i; its projection at a given t n and fixed k is a matrix which

is diagonal in the coefficient subscripts i and j. At epochs 1970 and
k

1975 all candidate models are complete through at least degree i0; wij

is then the non-zero constant w k for i = j <- 120 and zero for all other

(i,j) . Higher degree coefficients, including the GSFC (9/80)

coefficients of degrees ii through 13, are assigned zero weight; this

does not imply that they are zero.

The 1965 IGS candidate model includes coefficients only through

degree 8 (i < 80). Inspection reveals the 1965 DGRF coefficients of
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degree 9 and I0 (81 _ i _ 120) to be the rounded, equally weighted

averages of the GSFC and USGS candidate models. This is in accord with

the assignment of zero weight to the undetermined degree 9 and i0

coefficients of the 1965 IGS model. These coefficients are not assumed

to be zero here, so the 1965 weight tensor elements depend upon

coefficient degree. Note that the assignment of zero weight to certain

geomagnetic coefficients is a geophysical judgment; it is not a

mathematical result obtained by inverting infinite dimensional

information matrices with elements either determined or bounded by

either data or prior information.

Equation (i0) is here taken as defining the expected value of the

DGRF model coefficients. This expected value is a linear combination of

the candidate model coefficients: the weighted average with weights

inversely related to the uncertainty ascribed to the candidate models.

Linear combinations of DGRF coefficients are thus linear combinations of

the candidate models, so the expected value of the error of any linear

function of DGRF coefficients is zero (apart from roundoff error). For

example, the expected broad-scale radial field component

E{Br(a, tn)} = E{gik(a,tn)Si(8,_)} = [wijk(t n) gjk(tn)]S i

= gi(tn)S i = gi(tn)S i (lla)

is that given by the DGRF coefficients (_o within roundoff error). The

individual coefficient deviations

dik(tn ) m gik(tn ) _ gi(tn ) (llb)

have been calculated using the published candidate and DGRF model

coefficients. The expected error in the broad-scale radial field

E{_Br(a, tn)] : E(dik(a, tn)Si(@,_)} : [wijk(t n) djk(tn)]S i

: [gi(tn) - gi(tn)]Si -- 0
(!ic)

is indeed zero to within the expected cumulative (rss) roundoff error of

0.7 nT per Gauss coefficient. Note that non-linear functions of DGRF

coefficients like the scalar geomagnetic intensity or the absolute flux

linking the core (BENTON & VOORHIES, 1987) are non-linear combinations

of the candidate models and need not have zero expected error.

The expected value of the squared error in the broad-scale radial

field is needed to calculate the weight function (IB.10). This is

E{[6Br(a, tn)]2} = E{[Sidik][djksj]} = SiE{[dik] [djk]] Sj

: S i Eij(t n) Sj = [_Br(a,tn)] 2 = W(a,tn)-I (12a)

Cross correlations between candidate models (different superscripts) and

different epochs (t n) are omitted in accord with (I0) . For each t n and

each k, introduce the diagonal matrix square root of wijk(tn), _:
=

_im(k;tn) _mj(k;tn ) = wijk(t n)
(12b)
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with no sum over k or n.

in Br, [aBr(a,t)]2 , is

S i Eij Sj = S i ([_il k dlk] [_jmk dmk]] Sj : W(a,t) -I (12c)

and the covariance matrix for the radial field coefficients is

Eij = Zk [Xl _il k dlk] [_m _jm k dmk] = Zk Eijk (12d)

where the sum on k is performed after the relevant i by j matrices have

been formed. The covariance matrix is thus a weighted sum of dyadics.

The _ matrix allows the coefficient deviations dmk to be weighted in

accord with the DGRF averaging procedure. Because the elements of the

weight tensor w are normalized to unity, both the squared uncertainty

in the radial _ield (12c) and the covariance matrix elements (12d) have

the correct units of nT 2.

The radial field covariance matrix elements Eij were calculated

using the published Gauss coefficients and (12d) . The estimated

uncertainty (conditional standard deviation) of the DGRF Gauss

coefficients is the ratio of the square root of the diagonal elements of

Eij to n(i)+l. At epochs 1970 or 1975 the elements of symmetric E are

= Z_ d.kwkd.k This is not true at epoch 1965, when theof the form Eij K I 3 "

Eij with both i > 80 and j < 80 reflect both the non-zero probability

_I - (0.5x0.2) I/2 = 68.4%) that they are unknown and the naive

expectation that unknown elements of Ei_ are zero. Other expectations

could well overestimate the uncertainty _n the DGRF models. Such poorly

determined cross-correlations between different coefficient deviations

are assigned reduced weight in my attempts to weight these evolving

broad-scale geomagnetic field models.

The squared uncertainty estimates W(a,tn)-i were evaluated at the

mesh points of the regular 2°x2 ° grid using (12c) (the inverse of

(IB.10)}. This quantity is positive at all such points; however, at a

few (4 or 5) points it is less than 1 nT 2, indicating possibly

fortuitous outstanding agreement between candidate models. This can be

understood in terms of contours of perfect agreement between candidates:

contours where the first and second models agree can intersect contours

where the second and third models agree. The points of intersection

enjoy singular weight. More typically, the weight function again proved

to be heavy in regions of dense data coverage (e.g., Europe) where the

candidate models should agree, and light in regions of sparse data

coverage (e.g., the SE Pacific Ocean and portions of the Indian Ocean)

where the candidate models can differ more easily. The weight matrix

elements Wij at DGRF epochs 1965, 1970, and 1975 were then evaluated by

numerical integration of (IB.12a}.

The weight matrices used in equations (9) and thus the solutions of

(7) must reflect the typical uncertainty in the broad-scale radial field

during the sub-intervals between DGRF epochs. These were estimated by

numerical integration of equation (IB.12a) with the weight function

taken to be the inverse of the arithmetic mean of the DGRF inverse

weight functions at the sub-interval endpoints. Between DGRF epochs the

squared uncertainty in the radial field [OBr(a,t)]2 is thus treated as

if it were the (spatially variable) constant equal to the average of its

values at the sub-interval endpoints. For the interval 1980-1975, this

The expected value of the squared uncertainty
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procedure was used with the additional assumption that the uncertainty

in the initial radial field at epoch 1980 is negligible. The estimated

rms uncertainty in Br(a,t) at 1980 for the GSFC 12/83 through degree and

order i0 is much smaller than that for the 1975 DGRF (16 nT vs. 58.30

nT), so this is a fair approximation.

For general weights, the _ _ (tn) are used in place of the Wij (t n)

described above. The derivation_of _* matrices and the effect of using

them are described in the Appendix (also see the Appendix of Part IB) .

3.2 Weighted Variance in the 1980-1945 DGRF Models

There are many quantities of geophysical interest which can be

determined from the DGRF models and their covariance matrices. Of

immediate interest are the more easily interpreted scalar quantities

which describe the signal and the noise in these models as viewed from

the standpoint of one attempting to model geomagnetic secular change

relative to the 1980 MAGSAT epoch.

One such quantity is the root-mean-square change in the radial

magnetic flux density relative to 1980 averaged over Earth's surface

ABr(a,t ) m <[Br(a,t ) - Br(a,1980)]2>I/2 (13)

(VOORHIES, 1986b). Another is the rms uncertainty in the radial field

obtained from the DGRF covariance matrices described in section 3.1

OBr(a,t) _ <[aBr(a,t)]2>i/2. (14a)

Such integral measures have many representations; for example, the

square of (14a) is

[OBr]2 = <W(a,t)-l> 14b)

= <S k Ekl SI>
14c)

120

X {Eii/[2n(i)+l]}

i=l

14d)

120

Z {(_gi)2/[2n(i)+l])

i=l

14e)

I0 (n+l) 2 n

Z Z {[_gnm] 2 + [_hnm]2}

n=l 2n+l m=0

14f)

where (14d) follows from (14c) by orthogonality of the spherical

harmonics, the ogi in (14e) are the estimated uncertainties in the

radial field coefficients, and (Ogn TM, an m) in (14f) are the estimated

uncertainties in the Gauss coefficients of standard notation. The ratio

_Br(a,t)/aBr(a,t) provides a crude dimensionless measure of how

significant a change in the radial field is called for by the DGRF model

at time t relative to the 1980 DGRF model.
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A better measure of the secular change signal in a DGRF radial

field model relative to the 1980 DGRF is the weighted version of (13)

S0(a,t;t o) _ <[Br(a,t) Br(a,1980)]2W(a t)> I/2- , (15)

1/2

= ({[gi(tk) - gi(1980)] Wij(t k) [gj(t k) gj(1980)]}/4K)

with sums over i and j running from 1 to 120. This quantity measures

the secular change signal at time t (relative to 1980) in units of

estimated uncertainty (noise). It is the instantaneous rms signal-to-

noise ratio. The 4K semi-normalization allows direct comparison of S 0

to ABr/OB r. The quantity 4KS02 is the instantaneous weighted variance

in the secular change relative to 1980.

Time integration of the instantaneous weighted variance yields the

cumulative weighted variance

2

4_[A0(a,t;to) ] = 4_S

= 4gS

t 2

[S0(a,t;to)] dt

t o

t 2

<[Br(a,t) Br(a,1980)] W(a,t)> dt.

t o

(16)

At t = tf this is the total weighted variance in the secular change of

the radial field targeted for reduction. This is the square-weighted

residual resulting from the absurd hypothesis of no secular change: a

constant broad-scale radial geomagnetic component equal to that at 1980.

The method of interpolating both DGRF models and the weight

function should be specified to evaluate the time integral in (16). The

recommended interpolation is linear, but the working hypothesis

indicates interpolation via steady motional induction at the top of a

FFC bounded by a SFM. Because linear interpolation is not taken too

seriously, and because DGRF models are provided only at discrete epochs,

the cumulative weighted variance in the secular change of the radial

field called for by the DGRF models is taken to be

n

4K[A0'(a,tn;to)] 2 = 4_ Z [S0'(a,tk;to)]2 (17)

k=l

n

Z

k=l

[gi(tk) - gi(1980)] Wij(t k) [gj(t k) - gj(1980)]

where t n and t k are DGRF epochs. The cumulative weighted variance (17)

is conveniently independent of the interpolation method and is

dimensionless, as is the total weighted variance 4_[A0'(a, tn=tf;to)] 2

When the general weights based on _*ij(tn) instead of Wij (tn) are

used, the cumulative weighted variance is

n

f[A0*(a,tn;to)] 2 = f _ [S 0 (a,tk;to)] 2 (18)

k=l
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n

[gi(tk) gi(1980)] _*ij(tk) [gj(t k) - gj(1980)]

k=l

where the semi-normalization factor f is taken to be 120 (see Appendix).

This choice allows direct comparison between 60 and 60 and between A 0

and A 0 '

Table 1 lists, as a function of t n, the rms uncertainty in B r, OB r

(14); the rms change in B r, AB r (13); the ratio ABr/OBr; 80 ' from (15);

and the semi-normalized cumulative weighted variance, A0'2 (17). Table

2 lists _ Br; _Br; the ratlo ABr/a Br; 60 ; and A 0 2 approprlate to
* 2

general weights. Note (_ B r) = Eii/[2n(i)+l] = (OBr)2 + (11.24 nT) 2

for epochs 1965, 1970, and 1975 (see Appendix).

Table 1 shows that OB r is about 51 nT for the 3 averaged DGRF

models. Though little or no satellite data were available at epoch

1975, the decline of AB r going back from 1975 to 1965 likely reflects

the heavier weight ascribed to the IGS candidate model at the earlier

epochs. Note OB r is but 26 nT at 1960-possibly because of improved

methods used to derive the 1960 DGRF and its covariance. The rms change

in the expected broad-scale radial field AB r between 1945 and 1980 is

over 1900 nT. The typical rate of change of B r was about 55 nT/yr, but

was more rapid later in the interval-about 64 nT/yr between 1975 and

1980-in part because of the accelerating decline of the axial dipole.

The ratio ABr/OB r is always less than 60', so the weights increase the

signal magnitude (by an rms factor of 1.9). It follows that regions of

heavier weight (higher accuracy) correlate with regions of faster

secular change (larger _Br). This might be explained by the relatively

low areal data density over the Pacific Ocean where secular change is

thought to be slow.

The changes in the rms signal magnitude 60 ' as one looks back in

time reflect competition between increased change in the radial field

due to secular change (increased unweighted signal ABr) and decreased

weight (increased noise level OBr) prior to 1960. The latter is likely

due to a sparser data distribution before the International Geophysical

Year and the advent of satellite geomagnetometry. Caution in accepting

this explanation is advised because the prior information used in

deriving the 1945-1960 DGRF might reduce the apparent unweighted signal

magnitude in regions of poor data coverage. The semi-normalized total

weighted variance is 12,217.8; the square root of this number, 110.5, is

the total rms signal-to-noise ratio.

Table 2 shows that the general weights yield much larger values of

the rms signal-to-noise ratio and the semi-normalized and cumulative

weighted variance than do the radial field weights. This is not too

surprising because the different weights correspond to two different

objective functions (see Appendix of Part IB) . Indeed, radial field

weights should indirectly filter out the effects of D, X, Y, and H

geomagnetic data which help determine the scalar geomagnetic potential.

The semi-normalized total general weighted variance is 57,548.9,

indicating a total general rms signal-to-noise ratio of 239.89.

The semi-normalizations allow comparison of weights; they are not

intended to be misleading. With t o = 1980 and tf = 1945, the non-

normalized total weighted variances are 4_[A0'(a, tf;to)] 2 = 153,533 and

120[A 0 (a,tf;to)]2 = 6,905,832. The ratio of these numbers is about
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Select Properties of

Based

TABLE 1

the DGRF Models and Uncertainty Estimates

on Radial Field Weights

t n

(A.D.)

1980

1975

1970

1965

1960

1955

1950

1945

OBr (a,t)

(nT)

0 0

58 30

47 47

45 42

25 67

65 87

127.01

160.89

ABr(a,t) ABr/aB r 60'(a,tn;to)

(nT)

0.0 -

318.9 5.47 13.64

612.7 12.91 26.01

899.2 19.79 51.96

1157 .3 45 .08 61 .17

1427.2 21.67 64.35

1674.9 13.19 19.24

1929.3 ii .99 20.07

A0'(a,tn;to )2

186 0

862 5

3562 8

7304 4

11445 1

11815 1

12217 8

Select

TABLE 2

Properties of the DGRF Models and Uncertainty Estimates

Based on General Weights

t n G*Br(a,t) ABr(a,t) ABr/_*B r 60*(a,tn;to) A0*(a,tn;to )2

(A.D.) (nT) (nT)

1980 0.0 0

1975 59.37 318

1970 48.78 612

1965 46.79 899

1960 25.67 1157

1955 65.87 1427

1950 127.01 1674

1945 160.89 1929

0 -- -- --

9 5.37 42.09 1771.8

7 12.56 79.95 8164.3

2 19.21 119.17 22366.9

3 45.08 163.40 49067.6

2 21.67 72.73 54357.7

9 13.19 35.69 55631.6

3 11.99 43.78 57548.6
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2.222%; their square roots are 391.833 and 2,627.89; and the square root

of their ratio is about 14.91%. This latter figure suggests that the

radial field weights filter out 85% of the geomagnetic observations. In

this sense it takes 67 of the geomagnetic data modeled to affect the

expected radial field in the same way as i0 of the radial field data

modeled. This is not too surprising since Z data alone could determine

the scalar geomagnetic potential, but are uncommon.

3.3 The Tarqet Residual Variance

The definition of the cumulative weighted variance in the DGRF

models (17) requires the cumulative square-weighted residual relative to

the DGRF models to be redefined as

2 n 2

4_[Ar'(a,tn;to)] : 4_ )q [6r'(a,tk;to) ]

k=l

n

: 7. [gi(tk ) _ Yi(tk)]Twij(tk) [gj(tk) _ yj(tk) ] (19)
k=l

with i N 120. This measures how well the predicted radial field fits

the DGRF models. At t n = tf it is the total square-weighted residual.

For t o = 1980 and tf = 1945, if the residual at each pre-1980 epoch is

one estimated standard deviation (1o'), then the semi-normalized square-

weighted residual 6r '2 is (10') 2 at each e_och and the semi-normalized

total square-weighted residual Ar'(a,tf;to )_ is 7.

Replacing the primes with asterisks, W with _*, and 4_ with 120 in

(19) yields the cumulative generalized square-weighted residual

2 n 2

120[Ar*(a,tn;to)] = 120 Z [6r*(a,tk;to) ]

k=l

n

[gi(tk ) - Yi(tk)]Tf/ij(tk) [gj(tk ) - yj(tk)]. (20)
k=l

At t n = tf, this is the total generalized square-weighted residual. For

t o = 1980 and tf.= 1945, if the residual _t each pre-1980 epoch is io*,

then 6r'2 is (10 )2 at each epoch and A r (a,tf;to)2 is 7. This is the

total square-weighted residual left by any trajectory whose projection

onto the DGRF sub-space grazes each of the 7 error ellipsoids. Other

trajectories can of course hit the target semi-normalized square-

weighted residual of 7 provided residuals greater than 10* at some

epochs are balanced by errors less than lo* at other epochs.

If one accepts the uncertainty estimates derived for the DGRF

models and the radial field weighting, then the target square-weighted

residual is 7 out of 12,217.8. Then 99.9427% of the total weighted

variance in the evolution of the broad-scale radial field indicated by

the DGRF models is signal to be fit. The residual 0.0573% may well be

noise and defines the target normalized square-weighted residual. Its

square root, 2.394%, is the typical noise-to-signal ratlo in the secular

change of the radial field described by a DGRF model _elative to 1980.

The typical signal-to-noise [atio is (12,217.8/7) 1/2 or 41.7_. Typical
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(rms) residuals of Io', 2o', or 3a' correspond respectively to total

square-weighted residuals of 7, 28, or 63 out of 12,217.8.

If one prefers the general weights, then the target total square-

weighted residual is 7 out of 57,548.6. Then 99.9878% of the total

generally weighted variance in the evolution of the broad-scale scalar

geomagnetic potential indicated by the DGRF models is signal to be fit.

The residual 0.0122% is noise and defines the target normalized square-

weighted residual. Its square root, 1.103%, is the typical noise-to-

signal ratio in the secular change of the scalar geomagnetic potential

described by a DGRF model relative to 1980; the typical signal-to-noise

ratio is 90.67. This is over twice that indicated by the radial field

weights. Typical (rms) residuals of I_*, 20*, or 30* again correspond

respectively to total generalized square-weighted residuals of 7, 28, or

63 out of 57,548.6.

In my opinion, residuals less than 0.674_ suggest the unnecessary

fitting of noise; residuals exceeding la suggest a flawed hypothesis.

The hypothesis to be tested is that the secular change required by the

DGRF models can be explained by a source-free mantle surrounding a

frozen-flux core in (at least temporarily) steady surficial flow.

However, the SFM/FFC model is but an approximation, the core flow is not

strictly steady, the initial conditions are not very well known due to

ignorance of the narrow-scale core field, numerical approximations are

used in applying the method derived in section 3, and my uncertainty

estimates are but estimates. Moreover, normalized residuals of 10%

indicate a model of secular change which is accurate to first order.

Yet such 10% residuals indicate a typical error of 9.06o* (or 4.18_r')

per DGRF epoch.

In my opinion, if the hypotheses of steady flow at the top of a FFC

surrounded by a SFM can be used to derive a fluid velocity field which,

via steady motional induction, reproduces radial field models to within

normalized residuals of I0%, then it has some qualitative merit.

Residuals less than 3_' (6.52_) indicate appreciable qualitative merit.

Residuals less than 2a' (4.340*) indicate some quantitative merit.

Residuals less than i_' (2.17_*) indicate appreciable quantitative

merit. Residuals less than I_* demonstrate adequate quantitative merit.

However, any residuals greater than I_ indicate a need to improve

either the earth model (by eliminating one or more of the underlying

assumptions), or upon the means used to test it.

4. SUMMARY

Application of the method developed in paper IB to the Definitive

Geomagnetic Reference Field (DGRF) models [IAGA, 1988] has been

described. The numerical methods used and the derivation of weight

matrices for the DGRF models were outlined. The DGRF models are

truncated spherical harmonic representations which contain no explicit

information on any narrow-scale structure of the geomagnetic field.

Attempts to fit such models should not be penalized for predicting the

existence of such structure, provided its amplitude is not unreasonably

large. The derived weight matrices reflect this fact, were used to

assess the information on secular change contained in the DGRF models,

and were further used to estimate the tolerable residuals which could be
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produced by a quantitatively acceptable explication of definitive

secular change.

Preliminary results of applying the method have been presented

elsewhere (e.g, VOORHIES, 1987b,c; 1988a, 1989b); final results are to

be presented in part ID.

Application of the method to the DGRF models immediately encounters

a formidable obstacle: incomplete initial magnetic conditions in the

Fourier-Legendre spectral domain. The Gauss coefficients above degree

i0 were therefore treated as if zero to complete the initial condition-

preferably at the 1980 MAGSAT epoch. Effects of non-trivial narrow-

scale initial magnetic conditions have been considered and tested. The

truncation of DGRF models is not problematic at non-initial epochs-a

special feature of the steady flow hypothesis. Such truncation is

compatible with the goal of matching the evolution of the broad-scale

radial field (or low-degree scalar potential). Non-zero damping and a

velocity field truncation level of 16 were selected.

Two kinds of weights were investigated: radial field weights and

general weights. For radial field weights, the weighted, optionally

constrained, optionally damped iterated linear least-squares method

yields a steady fluid velocity that tracks the weighted evolution of the

radial magnetic field at Earth's surface indicated by the geomagnetic

field models fitted. For general weights, the method estimates the

fluid motion that tracks the weighted evolution of the scalar

geomagnetic potential at Earth's surface indicated by the geomagnetic

field models fitted. Both radial field and general weight matrices were

derived from the covariance matrices for the 1945, 1950, 1955, and 1960

DGRF models and from the candidate DGRF models for the 1965, 1970, and

1975 DGRF models. The 1980 DGRF model is treated as comparatively

perfect-a fair approximation.

The secular change of the broad-scale radial field relative to 1980

called for by the DGRF models was analyzed. The results for radial

field weights are summarized in Table I. These weights nearly double

the apparent signal magnitude. The semi-normalized total weighted

variance in the secular change of the broad-scale radial field is

12,217.8; the tolerable semi-normalized square-weighted residual is 7.

Some 99.94271% of the total weighted variance is thus regarded as signal

to be fit. Normalized root-mean-square residuals of 2.394% or less are

tolerable for radial field weights.

The results for general weights are summarized in Table 2. Then

the semi-normalized total weighted variance in the secular change of the

low-degree scalar geomagnetic potential relative to 1980 called for by

the DGRF models radial field is 57,548.6; but the tolerable semi-

normalized total square-weighted residual is still 7. Some 99.98784% of

the total generally weighted variance is regarded as signal to be fit.

Normalized root-mean-square residuals of 1.103% or less are tolerable

for the generalized weights.

Both radial field and general weights yield estimated tolerable

residuals less than the 7% errors expected in the SFM/FFC approximation.

When using radial field weights, the 7% expected error from this

approximation will cause a typical misfit of about 2.92o' per DGRF

epoch. When using general weights, the 7% expected error will cause a

typical misfit of 6.350* per DGRF epoch. Therefore, the combined

supposition of a SFM surrounding a FFC in surficially steady flow is
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expected to be rejectable with appreciable confidence. If this is so,

the need for a superior earth model will be clear; steps to develop such

a model have been taken.

If application of the method developed in this paper to derive a

single steady flow from 1980 back to 1945 yields errors exceeding 7%,

then the steady flow hypothesis might reasonably be rejected. If the

steady flow hypothesis yields errors of 7% or less, then it should be

retested using a superior earth model. In light of the interim upper

bound of 7% errors (i.e., at least 99.51% weighted variance reductions)

on the steady flow hypothesis, the prospects for resolving time-

dependent flow with an improved earth model by, say, seeking piecewise

steady flows, may not be too good. The ratio of the time-dependent flow

signal strength relative to the noise in the definitive secular change

models would then be at most 2.92 per DGRF epoch for radial field

weights. But corrections for CMB ellipticity and topography or mantle

conductivity might reduce the residuals resulting from the supposition

of steady flow, and, more importantly, this ratio is 6.35 per DGRF epoch

for general weights. The latter figure seems large enough to hope for

resolution of time-dependent core flow with a superior earth model.
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APPENDIX

= _* For epochs t n = 1945, 1950, 1955, and 1960, calculation of _j (tn)

ij (tn) was possible for the DGRF models using the derived Eij (tn)-

This was not possible for epochs 1965, 1970, and 1975. This might be

due to roundoff error in the published Gauss coefficients, the

interpretation of the DGRF weighting procedure used to obtain the

Eij(1965-1975), or failure of these Eij to account for properly expected

errors (e.g., fortuitous agreement of candidate models introducing a

singularity as described in section 3.1). On the chance that random

roundoff error was the source of this problem, (0.5 nT) 2 was added to

the diagonals of V matrices for 1965, 1970, and 1975. The resulting V*

matrices were used to calculate the generalized weight matrices

_*(tn) =-E*(tn)-i : {E(tn) + R[(0.5)2I]R] -I

: [R[V(tn) + 0.25I]R] -I = (RV*(tn)R]-I (AI)

for epochs t n = 1965, 1970, and 1975. This procedure also eliminates

any singularity caused by agreement of the candidate models. The _*

matrices are used to calculate the generalized weighted residual

variance. The arithmetic mean of these matrices at adjacent epochs is

inverted to obtain the generalized mean weight matrices _*(tl) which

replace W(tl) in equations (9) when the generalized weights are used.

Use of (AI) assumes additional uncorrelated noise in the large DGRF

models at epochs 1965, 1970, and 1975. The expected amplitude of this

noise in the radial component

i0 (n+l) 2 n 1/2 i0

{ Z Z (0.5 nT) 2} = ( E

n=l 2n+l m=0 n=l

(n+i)2(0.5 nT) 2}

1/2

= 11.24 nT (rms) (A2)

is comparable to that of very long wavelength crustal fields expected by

VOORHIES (1984)

1/2 i0 1/2 I0

{E[Brx2]} : ( Z Brx(n)2} = ( Z

n=l n=l

ii.91(0.9969) n]

1/2

= 10.82 nT (A3)

or by LANGEL, ESTES & SABAKA (1989),

1/2 i0 (n+l) 1/2 i0 (n+l) 1/2

[E[Brx2]} = [ Z ---Rnx] : { Z 20(0.9999387) n]

n=l 2n+l n=l 2n+l

= 10.56 nT. (A4]

However, the parabolic roundoff spectrum associated with (A2) is much

more 'blue' than the nearly 'white' crustal spectra (A3) or (A4).
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